Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Clin Infect Dis ; 75(1): e1063-e1071, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2017768

ABSTRACT

BACKGROUND: At the entry site of respiratory virus infections, the oropharyngeal microbiome has been proposed as a major hub integrating viral and host immune signals. Early studies suggested that infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with changes of the upper and lower airway microbiome, and that specific microbial signatures may predict coronavirus disease 2019 (COVID-19) illness. However, the results are not conclusive, as critical illness can drastically alter a patient's microbiome through multiple confounders. METHODS: To study oropharyngeal microbiome profiles in SARS-CoV-2 infection, clinical confounders, and prediction models in COVID-19, we performed a multicenter, cross-sectional clinical study analyzing oropharyngeal microbial metagenomes in healthy adults, patients with non-SARS-CoV-2 infections, or with mild, moderate, and severe COVID-19 (n = 322 participants). RESULTS: In contrast to mild infections, patients admitted to a hospital with moderate or severe COVID-19 showed dysbiotic microbial configurations, which were significantly pronounced in patients treated with broad-spectrum antibiotics, receiving invasive mechanical ventilation, or when sampling was performed during prolonged hospitalization. In contrast, specimens collected early after admission allowed us to segregate microbiome features predictive of hospital COVID-19 mortality utilizing machine learning models. Taxonomic signatures were found to perform better than models utilizing clinical variables with Neisseria and Haemophilus species abundances as most important features. CONCLUSIONS: In addition to the infection per se, several factors shape the oropharyngeal microbiome of severely affected COVID-19 patients and deserve consideration in the interpretation of the role of the microbiome in severe COVID-19. Nevertheless, we were able to extract microbial features that can help to predict clinical outcomes.


Subject(s)
COVID-19 , Microbiota , Adult , Critical Illness , Cross-Sectional Studies , Dysbiosis , Haemophilus , Humans , Neisseria , SARS-CoV-2
3.
Nutrients ; 13(2)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1576033

ABSTRACT

The soar in COVID-19 cases around the globe has forced many to adapt to social distancing and self-isolation. In order to reduce contact with healthcare facilities and other patients, the CDC has advocated the use of telemedicine, i.e., electronic information and telecommunication technology. While these changes may disrupt normal behaviors and routines and induce anxiety, resulting in decreased vigilance to healthy diet and physical activity and reluctance to seek medical attention, they may just as well be circumvented using modern technology. Indeed, as the beginning of the pandemic a plethora of alternatives to conventional physical interactions were introduced. In this Perspective, we portray the role of SmartPhone applications (apps) in monitoring healthy nutrition, from their basic functionality as food diaries required for simple decision-making and nutritional interventions, through more advanced purposes, such as multi-dimensional data-mining and development of machine learning algorithms. Finally, we will delineate the emerging field of personalized nutrition and introduce pioneering technologies and concepts yet to be incorporated in SmartPhone-based dietary surveillance.


Subject(s)
COVID-19/epidemiology , Mobile Applications , Pandemics , SARS-CoV-2 , Smartphone , Telemedicine , COVID-19/therapy , Exercise , Humans , Nutritional Status
4.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Article in English | MEDLINE | ID: covidwho-1039673

ABSTRACT

The COVID-19 pandemic has the potential to affect the human microbiome in infected and uninfected individuals, having a substantial impact on human health over the long term. This pandemic intersects with a decades-long decline in microbial diversity and ancestral microbes due to hygiene, antibiotics, and urban living (the hygiene hypothesis). High-risk groups succumbing to COVID-19 include those with preexisting conditions, such as diabetes and obesity, which are also associated with microbiome abnormalities. Current pandemic control measures and practices will have broad, uneven, and potentially long-term effects for the human microbiome across the planet, given the implementation of physical separation, extensive hygiene, travel barriers, and other measures that influence overall microbial loss and inability for reinoculation. Although much remains uncertain or unknown about the virus and its consequences, implementing pandemic control practices could significantly affect the microbiome. In this Perspective, we explore many facets of COVID-19-induced societal changes and their possible effects on the microbiome, and discuss current and future challenges regarding the interplay between this pandemic and the microbiome. Recent recognition of the microbiome's influence on human health makes it critical to consider both how the microbiome, shaped by biosocial processes, affects susceptibility to the coronavirus and, conversely, how COVID-19 disease and prevention measures may affect the microbiome. This knowledge may prove key in prevention and treatment, and long-term biological and social outcomes of this pandemic.


Subject(s)
COVID-19/microbiology , Hygiene Hypothesis , Microbiota , Aged , Anti-Infective Agents/therapeutic use , COVID-19/mortality , Eating , Female , Humans , Infant , Infection Control/methods , Male , Microbiota/drug effects , Physical Distancing , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL